
 

Recollection and familiarity in recognition memory:  
Evidence from ROC curves 

 

 

Andrew Heathcote1, Frances Raymond1 and John Dunn2 

 

1School of Psychology, Aviation Building, 

The University of Newcastle, Australia 

 

2School of Psychology, 

University of Adelaide, Australia 

 

 

 

Contact Email: andrew.heathcote@newcastle.edu.au

 

PENULTIMATE DRAFT OF A PAPER IN JOURNAL OF MEMORY AND LANGUAGE 

mailto:andrew.heathcote@newcastle.edu.au


Recollection and Familiarity 

 2

Abstract 
Does recognition memory rely on discrete recollection, continuous evidence, or both? Is 

continuous evidence sensitive to only the recency and duration of study (familiarity), or is it 

also sensitive to details of the study episode? Dual process theories assume recognition is 

based on recollection and familiarity, with only recollection providing knowledge about study 

details. Single process theories assume a single continuous evidence dimension that can 

provide information about familiarity and details. We replicated list (Yonelinas, 1994) and 

plural (Rotello, Macmillan & Van Tassel, 2000) discrimination experiments requiring 

knowledge of details to discriminate targets from similar non-targets. We also ran modified 

versions of these experiments aiming to increase recollection by removing non-targets that 

could be discriminated by familiarity alone. Single process models provided the best trade-off 

between goodness-of-fit and model complexity and dual process models were able to account 

for the data only when they incorporated continuous evidence sensitive to details. 
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Dual process theories propose that recognition memory is based on two qualitatively 

different kinds of memorial processes – recollection and familiarity (Yonelinas, 2002). 

Recollection is viewed as a discrete or all-or-none outcome that recovers details about the 

study episode through associations between the test item and aspects of the general study 

context, other studied items, and the physical characteristics of the studied item itself. For 

example, recollection of the study context can support list discrimination judgments (i.e., 

deciding which list an item was studied in), recollection of other studied items can support 

associative recognition judgments (i.e., deciding whether a pair of items was studied 

together), and recollection of the physical characteristics of a study item can support source 

memory (e.g., deciding if an item was heard in a male or female voice at study). Recollection 

can also play a role in item recognition. If recollected details are consistent with the test item, 

it may be classified as a target (recollect-to-accept), whereas, if recollected details are 

inconsistent with the test item, it may be classified as non-target (recollect-to-reject).  

If recollection fails, decisions are based solely on familiarity. In contrast to recollection, 

familiarity “is assumed to be a relatively fast process that reflects the global familiarity or 

strength of an item” (Yonelinas, 1999a, p.1416). It provides a continuous value that conveys 

undifferentiated information about the duration, frequency and recency of prior exposure to a 

test item. Although familiarity conveys no information concerning specific details of the 

study episode, it can often be used as a reasonably reliable indicator of prior exposure, and so 

can support decisions in an item recognition paradigm (i.e., discriminating studied and 

unstudied items). Familiarity may also play a role in paradigms such as list discrimination, 

but only when study recency provides a cue for list membership (e.g., discriminating lists 

studied 5 minutes and 5 days ago, Yonelinas, 1999a).       

The proposal that recognition memory is based on recollection and familiarity can be 

tested through examination of the shapes of receiver operating characteristic (ROC) curves 

(e.g., Yonelinas, 1999a). ROC curves plot, across different levels of decision confidence, the 

probability of a “yes” answer to the question posed by the recognition task for one type of 

test item (e.g., a target) against the probability of answering “yes” for another type of test 
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item (e.g., a non-target). In Yonelinas’s (1994) dual process signal detection theory 

confidence ratings are based on criteria placed on familiarity. In item recognition paradigms 

larger familiarity values are associated with higher confidence that a test item is old (i.e., was 

studied) as, on average, familiarity for studied items is greater than familiarity for unstudied 

(new) items. Dual process signal detection theory also assumes that high confidence old 

responses can result from recollect-to-accept processes and that high confidence new 

responses can result from recollect-to-reject processes. Other versions of dual process theory 

have been proposed (see Yonelinas, 2002 for a review), but here we focus on dual process 

signal detection theory and refer to it simply as dual process theory.   

We report tests of dual process theory using ROC data from a list discrimination 

paradigm, replicating Yonelinas (1994), experiment one, and an item recognition paradigm, 

replicating Rotello, Macmillan and Van Tassel (2000), experiment one. In these paradigms 

recollect-to-accept processes can be used to make decisions about targets and recollect-to-

reject processes can be used to make decisions about non-targets that are very similar to 

targets. In the list discrimination paradigm, targets and similar non-targets correspond to 

items presented in two different study lists separated by a short pause. In the item recognition 

paradigm, similar non-targets differ only in plurality from studied items, half of which are in 

plural and half in singular form. For example, if hand is a studied, target, item then hands is a 

similar non-target item. In both the list and plural discrimination paradigms similar non-

targets can be rejected on the basis of recollected details, concerning either the list context or 

the plurality of the studied item respectively. Both paradigms also included new non-target 

items that had not been studied in either list or in either plurality. For these items, recollection 

is assumed to play no role and decisions are based purely on familiarity, which would be less 

for these items than for either targets or similar non-targets. 

In both the list discrimination and plurals paradigm, targets and similar non-targets have 

been chosen to have nearly equal levels of familiarity. In the list discrimination paradigm, 

targets and similar non-targets are drawn from different lists distinguished at study only by a 

short pause. In the plurals paradigm, similar non-targets differ from targets only in terms of 
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their plural form (e.g., hand vs. hands)1. When targets and similar non-targets have equal 

familiarity, dual process theory assumes that they can only be discriminated by discrete 

recollection. As a result, this theory predicts that the ROC curve relating targets to similar 

non-targets is linear (see Appendix A for details). Rotello et al. (2000) found an almost 

exactly linear ROCs of this type, but Yonelinas (1994) did not (see Figure 1, right panels). 

Linear ROCs have been found in related paradigms, such as associative recognition 

(Yonelinas, 1997) and source identification (Yonelinas, 1999a), that also equate familiarity. 

However, these results appear to be exceptions, with the majority of findings indicating non-

linear ROCs in associative and source recognition paradigms (e.g., Glanzer , Hilford, & Kim, 

2004; Healy , Light & Chung, 2005; Hilford , Glanzer, Kim and DeCarlo, 2002; Kelley & 

Wixted, 2001; Qin , Raye, Johnson & Mitchell, 2001; Slotnick , Klein, Dodson & 

Shimamura, 2000; Verde & Rotello, 2004).  

It is possible that strategic factors may affect the shape of the relevant ROC curves. Such 

strategic factors could influence whether participants attempt recollection, and whether they 

use recollected details to accept or reject test items. In Rotello et al.’s (2000) first experiment 

participants were instructed to recollect-to-reject (i.e., respond “no” with high confidence if 

they recalled studying the test item in its alternative plurality), whereas Yonelinas (1994) did 

not give these instructions. Consistent with the influence of strategic factors, in a second 

experiment where Rotello et al. did not give recollect-to-reject instructions non-linear target 

versus similar non-target ROCs were found.  

We investigated the role of strategic factors in two further experiments that replicated the 

original list and plural discrimination experiments with the exception that no new non-target 

items were presented at test. To distinguish the two sets of experiments, we refer to those that 

include new non-targets as “with-new” experiments and those that exclude new targets as 

“no-new” experiments. We speculated that new non-targets may increase reliance on 

familiarity, which can be used to discriminate these items from both targets and similar non-

targets, and similarly discourage the use of recollected details, since such details are unlikely 

to be recollected for new non-targets. Hence, we hypothesised that the probability of 
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recollection would be greater in the no-new experiments compared to with-new experiments 

and that more linear target versus similar non-target ROC curves would result. As a corollary, 

we also hypothesised that target versus similar non-target discrimination would be better in 

the no-new than with new experiments due to the increase in information provided by 

recollection. 

For both versions of the plurals paradigm we directly instructed participants to use a 

recollect-to-reject strategy, following Rotello et al.’s (2000) first experiment. Following 

Yonelinas’s (1994), we did not give direct recollect-to-reject instructions in either list 

discrimination experiment.. We thus hypothesised that recollect-to-reject decisions would be 

more common in the plural discrimination experiments than in the list discrimination 

experiments.   

Single Process Theories 

In contrast to dual process theories, single process theories of recognition memory 

assume that decisions are based on a single continuous evidence dimension. These theories 

postulate that evidence is not restricted to familiarity; it can also be derived from flexible cue 

matching processes that are responsive to task demands. For example, Humphreys, Bain and 

Burt (1989) distinguished between two conceptually distinct types of evidence which they 

called generalized strength and episode specific strength. Generalized strength, like 

familiarity in dual process models, is “an amalgam of the frequency, recency and duration of 

exposure” (Chalmers & Humphrey, 1998, p.612). Generalized strength does not vary with 

test instructions, although instructions and task demands may cause decisions to be based to a 

greater or less degree on this form of memory. Episode specific strength, in contrast, is 

sensitive to test instructions through the types of cues that are used to probe memory. 

Generalized strength might itself be a product of a cue matching process, such as a match to 

the current (test) context, or it might arise from different processes, such conceptual implicit 

memory which has been proposed as the basis of familiarity in dual process theory 

(Yonelinas, 2002).  

Evidence in single process theories can either be directly proportional to combined match 
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values (e.g., the global memory models, see Humphreys, Pike, Bain & Tehan, 1989) or based 

on a likelihood transformation of combined match values (e.g., Dennis & Humphreys, 2001; 

Shiffrin & Steyvers, 1997). Although theories that base evidence on a combination of flexible 

cue matching processes and familiarity processes are referred to as “single-process”, and we 

will maintain this usage here, this term is really a misnomer given that evidence can be based 

on values obtained from more than one cue matching operation and potentially more than one 

type of process, and that these values can be combined and transformed by sophisticated 

decision mechanisms, such as likelihood. Evidence as conceived by single process theories 

has also been called familiarity. For clarity we will use the term “familiarity” in the sense 

intended by dual process theories and describe a continuous dimension that supports 

recognition decisions by the more general term “evidence”.  

Single process theories have been closely aligned with signal detection models of 

measurement in choice tasks (see Green & Swets, 1966; Macmillan & Creelman, 1991) as 

both assume that decisions are based on a single continuous strength-of-evidence dimension 

(see Wixted & Stretch, 2004, for further discussion). By examining the ability of a signal 

detection model to account for ROC data, it is possible to test the single process account. 

Dual process signal detection theory (Yonelinas, 1994) also incorporates a signal detection 

decision process, but one that limits continuous evidence to familiarity. Hence, according to 

dual process theory, equally familiar items can only be discriminated using recollection. In 

the present context, if targets and similar non-targets have equal levels of familiarity, the 

corresponding ROC curve must be linear. In contrast, according to single process theories, 

equally familiar targets and non-targets can be discriminated using continuous evidence. 

Consequently, single process theories predict that the corresponding ROC curve should be 

non-linear.  

We also propose and test a specific version of the signal detection model developed to 

account for the list discrimination and plurals paradigms (see Appendix B for mathematical 

details). The basic idea behind this model is that discrimination of targets and similar non-

targets is based on the difference of strengths of two cue matching processes. For this reason, 



Recollection and Familiarity 

 8

we refer to it as the cue-matching model.  In a list discrimination paradigm, it is assumed that 

cues representing both study list contexts are used to probe memory. Evidence that a test item 

appeared on the target list is proportional to the difference between the match strength of the 

item to the target list cue and the match strength of the item to the non-target list cue. 

Similarly, differences between matches to singular and plural cues are used to provide 

evidence in the plurals paradigm. The set of difference values defines a single strength-of-

evidence dimension. Relatively large values on this dimension support a target decision while 

relatively small values support a non-target decision. We will describe such continuous cue-

dependent measures that provide a basis for judgments concerning task relevant details of test 

items as specific strength. The notion of specific strength is more general than Humphreys et 

al.’s (1989) episodic specific strength in that it can be based on specific details of a study 

item (e.g., its plurality) as well as specific details of the study episode (e.g., study list). 

In single process theories, both generalized and specific strength may contribute to the 

total strength-of-evidence, with the relative weight of each depending on task demands. For 

example, if some non-target test items in a list discrimination task are new (i.e., not studied in 

either list), evidence could consist of a weighted combination of generalized strength, 

relevant to the discrimination of old from new items, and specific strength, relevant to the  

discrimination of target from non-target list items. If there are no new non-targets at test then 

we assume that evidence depend only on specific strength. This leads the cue-matching 

model to predict that discrimination between targets and similar non-targets should be better 

in the no-new than in the with-new experiments. This occurs because the addition of 

generalized strength makes evidence noisier and hence less reliable.  

ROC Analysis 

Most single process theories assume that evidence arising from cue match values is based 

on the sum of a large number of randomly varying factors, such as matches to many different 

memory traces in the global memory models (see Humphreys, Pike, Bain & Tehan, 1989). 

This implies that evidence based on cue matches will be approximately normally distributed, 

and a similar logic applies to familiarity as well as to specific strength. When evidence is 
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normally distributed, the ROC curve has a characteristic concave2 shape. In addition, item 

recognition ROC curves are typically asymmetrical (for a summary, see Ratcliff, Gronlund & 

Sheu, 1992)3. In order to explain this, single process theories assume that the strength-of-

evidence of studied items is more variable than that of unstudied items because, among other 

reasons, the effects of study are likely to vary across trials due to fluctuations in attention and 

encoding processes. Dual process theory, in contrast, assumes that familiarity has the same 

variance for both studied and unstudied test items (Yonelinas, 1994) and explains the 

asymmetry of ROC curves due to recollection. This results in an increase in the y-intercept to 

a value equal to the probability of recollection, with the asymmetry of the ROC curve 

increasing as recollection increases. The ROC curves for similar non-targets versus new non-

targets reported by Yonelinas (1994) and Rotello et al. (2000) were so asymmetric that they 

dipped below the main diagonal at the rightmost point (see Figure 1, left panels). This “dip 

effect” has a plausible explanation in terms of recollect-to-reject processing, whereby some 

similar non-targets are correctly recollected to have been studied either in their alternative 

plurality or in the non-target list, leading to high confidence non-target responses. When such 

details are not recollected, the greater familiarity of similar non-targets causes them to be 

more often mistakenly classified as targets, so the remainder of the ROC is above the main 

diagonal. 

The dip effect can also be accommodated by a signal detection model if the variance of 

the evidence distribution for similar non-targets  is greater than that for new non-targets. In 

this case, the ROC asymmetry associated with unequal variance can result in a dip effect as 

long as the mean strength-of-evidence of similar non-targets  is not much greater than the 

mean of new non-targets. This illustrated in Figure 2 which plots the probability and 

cumulative probability functions for the best fitting unequal variance signal detection model 

based on the average data from Rotello et al. (2000), experiment one. The new non-target 

distribution is used as a reference with a mean fixed at zero and a standard deviation fixed at 

one. The similar non-target (plural new) distribution has close to the same mean (-0.07) but 

has a much larger standard deviation (1.75). As a result, as the decision criterion shifts to the 
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left, the proportional increase in the cumulative response rate is less for the high variance 

distribution than for the low variance distribution resulting in the slope of the ROC curve to 

be less than one. If this is marked enough then the curve will dip below the main diagonal, as 

was the case for both Rotello et al’s data and the fitted signal detection model. 

Although the signal detection model can describe the dip effect, how can a single process 

memory theory explain this pattern of evidence distribution parameters? We show in 

Appendix B that the cue matching model predicts that similar non-target variance is greater 

than new non-target variance, and that their means can be close to equivalent, as observed in 

the fits illustrated in Figure 2. However, it is difficult to make exact predictions about 

evidence variability when ROC data are averaged across participants, because averaging 

confounds individual differences in mean evidence variability with variability of evidence 

within a participant. Averaging also risks confounding by ceiling effects, which have a larger 

effect on target than similar non-target conditions, and so can cause target variance to be 

underestimated relative to similar non-target variance4. We fit models to our data at the 

individual level to avoid potential problems caused by averaging. 

Extending the Dual Process Model 

The concave ROC curves found by Yonelinas (1994) in list discrimination, and in the 

majority of associative and source recognition studies (e.g., Glanzer et al., 2004; Healy et al., 

2005; Hilford et al., 2002; Kelley & Wixted, 2001; Qin et al., 2001; Slotnick et al., 2000; 

Verde & Rotello, 2004) are inconsistent with the predictions of dual process theory, since 

familiarity should be approximately equal for targets and non-targets in these paradigms. In 

contrast, single process theories are consistent with these results as they allow targets and 

non-targets to differ in specific strength. In light of these results we propose and test an 

extended dual process model that replaces an evidence dimension based purely on familiarity 

with one that can also take account of specific strength. Including specific strength in 

evidence allows the extended dual process model to accommodate concave ROC curves for 

test items with equal familiarity.  

The extended model is consistent with evidence supporting dual process theory (e.g., 
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Yonelinas, 2002), because it allows both recollection and familiarity to play a role in 

recognition decisions. It is also consistent with single process theories that model recall data 

(e.g., Gillund & Shiffrin, 1984), as their recall mechanisms could, at least in principle, 

account for recollection.  We use the acronym DP to denote the original dual process model 

(Yonelinas, 1994) and the acronym DP-s to denote the extended dual process model that 

allows specific strength to contribute to continuous evidence. For our experiments, the crucial 

difference between these models is that the DP-s model allows evidence to differ between the 

target and similar non-target conditions, whereas the DP model does not.    

A second potential extension of dual process theory concerns its assumption that 

familiarity has the same variance for both targets and non-targets. This assumption implies 

that ROC asymmetry is associated with convex5 z-ROC curves. However, in item recognition 

paradigms, Glanzer, Kim, Hilford and Adams (1999) and Heathcote (2003) found 

asymmetric ROC curves but no evidence of convex z-ROC curves (but see Yonelinas, 1999a, 

1999b). Heathcote suggested that dual process theory should be revised to allow studied 

items to have greater familiarity variance than unstudied test items. We use the acronym 

DP-su to denote an extended dual process theory that allows for both unequal familiarity 

variance and specific strength.  

ROC Models and Model Testing 

In summary, we test three variants of dual process theory; the original DP model 

(Yonelinas, 1994), the DP-s model, and the DP-su model. We compare each of these models 

with two single process models. The first, denoted by the acronym SP, is the unequal 

variance signal detection decision model assumed by most single process memory models. 

The second, denoted by the acronym SP-c, is derived from the cue-matching theory detailed 

in Appendix B. The SP-c model differs from the SP model only in the SP-c model target and 

similar non-target evidence standard deviations are assumed equal, whereas they can be 

unequal in the Sp model. All five models are defined in Appendix A and their basic features 

are summarized in Table 16.  

The five models in Table 1 differ in the number of parameters that are to be estimated 
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from data. Models with more parameters may provide a better fit simply because they are 

more flexible. To compensate for this greater flexibility, we compared the models using 

criteria that combine goodness-of-fit, as measured by the model’s maximum (negative) log-

likelihood (l), with a complexity penalty. The best model is the one with the lowest criterion 

value. We use two such criteria, the Akaike Information Criterion (AIC) that adjusts for the 

number of model parameters, p, and the Bayesian Information Criterion (BIC) that also 

adjusts for the number of observations (n). That is, 

( )∑ ∑=
i j ijij pfl ln  plAIC 22 +−=  ( )nplBIC ln2 +−=  

The summation is over i=1..k conditions (e.g., targets and non-targets) and j=1..m response 

categories (i.e., confidence levels for target and non-target choices), where fij and pij are, 

respectively, the number of observations and corresponding probabilities predicted by the 

model. Myung and Pitt (1997) have noted that AIC tends to favour more complex models 

when fits are based on a large number of observations, as was the case for our data. Neither 

criterion takes into account complexity due to differences in the functional form of models7.  

We also report a measure of goodness-of-fit, ( )∑ ∑=
i j ijijij FffG 2 , where Fij is the 

expected frequency based on the maximum likelihood estimates of the model. G is 

approximately distributed as χ2 with n-p degrees of freedom8 and so its sum over N 

participants is also distributed as χ2 with N(n-p) degrees of freedom. Differences in the 

summed G values can be used to construct χ2 tests with Nq degrees of freedom of whether 

the addition of q parameters to a model causes a significant increase in fit. For dual process 

models we focus on comparisons between DP and DP-s and between DP-s and DP-su, which 

test whether specific strength improves the fit of the DP model, and whether unequal 

evidence variance improves the fit of the DP-s model. For single process models we compare 

SP-c and SP models, to test whether unequal target and similar non-target evidence variance 

improves fit. 

Experiment 1: List Discrimination 

 12

Experiment one was designed to replicate experiment one from Yonelinas (1994) using 

the list discrimination paradigm. We modified the design in two ways. First, in the 
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original experiment, at each of six experimental sessions, 800 words were randomly sampled 

from the 1000 high frequency concrete nouns that make up the Toronto word pool. We chose 

to use a larger word pool in order to avoid repeating items across sessions. Second, the 

original experiment compared short (10 item) and long (30 item) study list lengths. As both 

conditions produced similar results, we used a single study list length of 20 items. As a result, 

we required only three experimental sessions to obtain the same number of observations as 

collected by Yonelinas (1994).  

Method 

Participants 

Ten members of the staff and student body of the Faculty of Medicine and Dentistry at 

the University of Western Australia participated in this study. Data from four participants 

were excluded due either to failure to complete the three sessions (1), or unacceptably high 

error rates (3). We report data from the remaining six participants. Participants were offered 

thirty dollars reimbursement upon completion of the experiment to assist with travel/parking 

expenses. Following explanation of the task, written consent was obtained prior to 

commencement of the experiment.   

Apparatus and stimuli 

Stimuli were 1440 words drawn from the Toronto word pool (Friendly, Franklin, 

Hoffman & Rubin, 1982) and augmented by words selected from the MRC Psycholinguistic 

Database, Version 2.00 (Coltheart, 1981). The latter items were all concrete nouns and had 

the same frequency distribution as items in the Toronto word pool. The average Kučera and 

Francis (1967) word frequency rating for all the words was 73. For each participant, 480 

items were randomly selected without replacement to be used in each of the three sessions. 

An additional 50 words were used for practice at the beginning of the first session.  

Experimental tasks were administered with an IBM desktop PC using Cedrus SuperLab 

Pro (v2.0) software. Stimuli were presented on a 15” CRT monitor. Responses were collected 

via a Superlab Pro RB830 8-button response pad. The six top-most buttons, arranged in two 

horizontal arcs, were labelled (from left to right) “sure new”, “probably new”, “guess new”, 
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“guess old”, “probably old” and “sure old”. The two remaining buttons were not used. 

Procedure 

There were three experimental sessions each conducted on a separate day. Each session 

consisted of eight study-test cycles. Each cycle consisted of two 20-item study lists followed 

by two 30-item test lists. Each test list was composed of 10 items from each of the study lists 

and 10 new items. No item appeared in more than one study list or test list. Before the first 

session, an additional study-test cycle was administered as practice. Data from this cycle was 

not included in analyses. Instructions appeared on the screen prior to presentation of the 

experimental stimuli. Participants were advised that they would see two study lists, followed 

by two tests lists, and that they were to try to remember each of the words in the study list as 

well as the list in which it had appeared. Before each test list, one of the two study lists in the 

present cycle was nominated as the target list. Each study list was nominated as the target list 

once in each cycle with the order of nomination randomized across cycles. Participants were 

told to rate their degree of confidence that a test item had been presented in the target list. A 

6-point scale was used where 1=sure new, 2=probably new, 3=guess new, 4=guess old, 

5=probably old, and 6=sure old. Participants were instructed to respond as quickly, but as 

accurately as possible. Instructions for the practice and experimental tasks were identical. 

Each study item was presented for two seconds and there was no inter-stimulus interval. 

There was a five second pause between each pair of study lists. At the end of the second 

study list the prompt for the first test appeared. Test items remained on the screen until a 

response was made. Participants had the opportunity to rest for as long as they liked between 

each study-test cycle. Each participant completed each of three sets of eight study-test cycles 

on a separate day with one to three days between each session. 

Results and Discussion 
Figure 3 presents the ROC curves and fits of the DP and SP-c models obtained by 

averaging both the data and the best fitting model predictions over participants. Our results 

replicate those of Yonelinas (1994), showing a dip effect for the similar versus new non-

target ROC. The SP-c model accurately fits both the target versus new non-target and the 
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similar non-target versus new non-target ROC curves. In contrast, the DP model 

systematically underestimates the target versus new non-target ROC curve and overestimates 

the similar non-target versus new non-target ROC curve. In Table 2, and following tables of 

results, we report G’=G/min(G), where min(G) is minimum G value for set of models. By 

definition min(G) occurs for the most complex, and hence best fitting, model in the set 

(DP-su in all cases). G’ results in Table 2 indicate that the fit of the DP model is worse by a 

factor of almost 4 than the SP-c fit.  

Table 2 also shows the performance of each model after adjusting for complexity using 

the AIC and BIC criteria. In Table 2, and following tables, we report AIC’=AIC-min(AIC) and 

BIC’=BIC-min(BIC), where min() is minimum criterion value for a set of models. Hence, the 

model selected by AIC has AIC’=0 and the model selected by BIC has BIC’=0. Overall, BIC 

selected the SP-c model, indicating that it provided the best compromise between goodness of 

fit and model complexity among the set of five models. These results indicate that 

recollection, and unequal variance between targets and similar non-targets, do not provide a 

sufficient increase in fit to justify the additional estimated parameters that they require. The 

SP model had only a slightly better fit than the SP-c model, by a factor of 1.13, but this 

increase was significant, χ2(6)=18.1, p=.006.  

The more complexity tolerant AIC method selected the most complex model, the DP-su 

model, which incorporates both recollection and evidence of the type assumed by single 

process theories, with both unequal variance and specific strength.  Comparison with the DP 

and DP-s fits shows that allowing specific strength provides an improvement in fit by a factor 

of 2.5, χ2(6)=377, p<.001. Comparison of the DP-s and DP-su models shows that once 

specific strength is allowed, unequal variance improves fit by a further factor of 2.6, 

χ2(6)=154, p<.001. Hence both modifications of the DP model were supported. 

The DP-su model estimates that recollection occurred for about a quarter of trials. The 

average probabilities of correct responses for targets and similar non-targets were 0.70 and 

0.83 respectively. The DP-su model attributes 39% and 25% respectively of these correct 

responses to recollection. Hence, when recollection is assumed to occur, the majority of 
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correct responses are based on continuous evidence. Consist with this attribution, targets and 

similar non-targets d' estimates for the DP-su model differed by 1.4, indicating good 

discrimination on the basis of evidence.   

Experiment 2: Plural Discrimination 
Experiment two replicates experiment one from Rotello et al. (2000). Our design differed 

slightly from Rotello et al. in that we used five study-test cycles, as opposed to three in the 

original experiment. We also tested only 16 items of each type (target, similar non-target, 

new non-target) for each list, whereas Rotello et al. tested 24 of each type. Therefore, across 

all study-test cycles, we collected 80 observations for each item type, slightly more than the 

72 observations collected in the original experiment. 

Method 

Participants 

Twenty-four undergraduate psychology students from the University of Newcastle 

participated in the study in exchange for course credit. Data from five participants were 

removed from further analysis because of a failure to use the middle (guess) confidence 

ratings and because of low accuracy indicating a lack of engagement with the task. Data are 

thus reported from a total of 19 participants. 

Apparatus and stimuli 

Stimuli were drawn from a pool of 374 singular concrete nouns selected from the MRC 

Psycholinguistic Database, Version 2.00 (Coltheart, 1981), for which plural forms could be 

created by adding an “s” (e.g., tree-trees). All stimuli were 3-12 characters in length, with a 

mean word frequency of 71 (Kučera & Francis, 1967). For each participant, 286 singular–

plural word pairs were selected randomly from the pool for study. Either the singular or 

plural form from each pair was selected at random, with an equal number of singular and 

plural words in each study list. The study words were divided into six sets, one list of 24 

words was used for practice and five sets of 48 words for experimental study lists. The 

remaining words in the study set were used as untested buffers added to the beginning and 

end of the study lists, giving a practice study list of 26 words, and experimental study lists of 
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52 words. 

For each test list, 16 studied words (8 for practice) were randomly selected to be 

presented in the same plurality as at study (old items), 16 study words (8 for practice) were 

selected at random to be presented in the alternate plurality as at study (similar lures), along 

with 16 (8 for practice) unstudied words (new lures). Test word presentation order was 

randomized and half of the words were singular and half were plural for each condition. New 

lure items were not repeated in subsequent test lists.  

Experimental tasks were administered with an IBM compatible desktop PC using Cedrus 

SuperLab Pro (v2.0) software. Stimuli were presented on a 17” monitor and responses 

collected via a SuperLab Pro RB830 8-button response pad. The six top-most buttons, 

arranged in two horizontal arcs, were labelled (from left to right) “sure old”, “probably old”, 

“guess old”, “guess new”, “probably new” and “sure new”. The two remaining buttons were 

not used. 

Procedure 

The task was explained, and written consent obtained, prior to commencing the practice 

first session. Participants were informed they would be presented with six study lists, each 

followed by a test list, and that the first study-test cycle was for practice. Each study word 

was presented for 3 sec, with an inter-stimulus interval of 1 sec. Participants were informed 

that they should try to remember the words, as their memory for them would be tested. 

Immediately following each study list, participants were presented with instructions on the 

screen indicating that they would be presented with the test list as soon as they pressed any 

button. They were instructed to decide if each test word had been presented in the study list 

using a 6-point rating scale (1=sure old, 2=probably old, 3=guess old, 4=guess new, 

5=probably new, 6=sure new).  Following each test phase, participants were asked to press 

any button when they were ready to begin the next study-test cycle. 

 Before the experiment began, participants were instructed to pay particular attention to 

the plurality of study and test words and to respond old only to a test word if it had been 

studied in exactly the same form. All participants were given the example that if they could 
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remember studying the word cats, but they were presented with the test word cat, they could 

be confident that cat was a new item. Participants were also informed that one-third of the 

test words had not been studied in either plurality and they were to classify these as new 

items as well. After the practice cycle, participants received feedback showing their accuracy 

and the number of times they had used each response category, and were reminded to make 

sure that they used all confidence levels. 

Results and Discussion 

Figure 4 presents the ROC data and fits of the DP and SP-c averaged over participants. 

Comparison with Figure 3 indicates a stronger dip effect in plural discrimination than list 

discrimination, which is consistent with a comparison of results from Rotello et al. (2000) 

and Yonelinas (1994) (see Figure 1). The SP-c model was able to accommodate the stronger 

dip effect, whereas the DP model shows the same systematic over and under estimation as 

occurred in list discrimination. The DP model fares better in terms of goodness-of-fit than in 

list discrimination, but is still worse than the SP-c model by a factor of 12/3. Both AIC and 

BIC criteria select the SP-c model first and the SP model second. These results favouring the 

cue matching model are stronger than in list discrimination, as even the more complexity 

tolerant AIC method indicates that recollection, and unequal variance between targets and 

similar non-targets, do not provide a sufficient increase in fit to justify the additional 

estimated parameters that they require.  

The relative fits of SP and SP-c models were similar to those found in experiment one. 

The SP model fit better than the SP-c fit by a factor of only 1.14, but in this case, the increase 

in fit was not significant, χ2(19)=25.7, p=.14. This supports the cue matching theory from 

which the SP-c model was derived. Consistent with this model evidence variance for targets 

and similar non-targets were almost equal. 

According to AIC the DP-su model was the highest ranked dual process model and 

according to BIC the DP-s model was highest ranked. Comparison with the fits of the DP and 

DP-s models shows that addition of specific strength improves the fit by a factor of 1.55, 

χ2(19)=118, p<.001. Comparison of the DP-s and DP-su models shows that if specific 
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strength is allowed, allowing unequal variance improves fit by a further factor of 1.9, 

χ2(38)=101, p<.001.  

Given that both modifications of the DP model received support we examine the DP-su 

model parameter estimates to determine the relative roles of recollection and evidence in 

arriving at correct decisions. All dual process models estimated lower rates of recollection in 

this experiment than in experiment one. The relative probabilities of recollect-to-accept and 

recollect-to-reject were similar in both experiments. Both results are inconsistent with our 

hypothesis that the recollect-to-reject instructions given in the plural discrimination 

experiment would increase both the overall level of recollection and the relative level of 

recollect-to-reject processing compared to the list discrimination experiment, where no such 

instructions were given.  

Parameter estimates for the DP-su model indicated that evidence plays a much larger role 

in discriminating targets and similar non-targets than recollection. Target and similar non-

target d' estimates differed by 1.45, a slightly greater difference than in list discrimination. 

The average probabilities of a correct response for targets and similar non-targets were 0.67 

and 0.71 respectively. The DP-su model attributes 21% and 20% respectively of these correct 

responses to recollection. Hence, about 80% of correct responses are attributable to 

continuous evidence. This value is also slightly higher than for list discrimination, perhaps 

because targets were more familiar than similar non-targets in the plural discrimination 

paradigm. However, the increase is only small, and so an explanation of plural discrimination 

performance purely in terms of familiarity seems unlikely.   

Experiments 3 and 4 
Experiments three and four replicate experiments one and two respectively, except that no 

new non-targets were tested. In the absence of new non-targets, the modelling environment is 

altered slightly as detailed in Appendix A. Since there are now only two test item types, then 

without loss of generality, the evidence distribution of similar non-targets may be taken as a 

reference distribution. Thus, the mean and variance of this distribution is assumed to be zero 

and one, respectively. As a consequence, the DP model is a pure discrete recollection model. 



Recollection and Familiarity 

 20

This version of the DP model predicts linear target versus similar non-target ROCs, as found 

by Rotello et al. (2000).     

Method 

Participants 

In the list discrimination task (experiment three), the participants were eight members of 

the staff and student body of the Faculty of Medicine and Dentistry at the University of 

Western Australia. They were paid $30 for their participation and none had previously 

participated in experiment one. In the plural discrimination task (experiment four), 

participants were twenty-four undergraduate psychology students from the University of 

Newcastle. They received course credit and none had previously participated in experiment 

two. 

Stimuli and apparatus 

Word pools and apparatus were the same as in experiments one and two. In list 

discrimination 320 items were randomly selected without replacement to be used in each of 

the three sessions for each participant. An additional 50 words were used for practice at the 

beginning of the first session.  

Procedure 

The procedure for list discrimination was the same as that used in experiment one with 

the exception that each test lists contained no new lures. As a consequence, each test list 

consisted 20 items consisting of a random mixture of 10 old items and 10 similar lures. 

Participants were told that the test list would consist only of items that had been presented in 

the two study lists. They were instructed to use the six-point rating scale and to respond “old” 

if a test word had been presented in the target list (target) and to respond “new” if the word 

had been presented in the alternative study list (similar non-target). 

The procedure for plural discrimination was the same as that used in experiment two, 

except that the set of new non-targets presented at test were replaced by an equal number of 

similar non-targets. For each experimental list, 16 of the studied words (8 for practice) were 

selected randomly to be presented in the same plurality at test (targets) and the remaining 32 



Recollection and Familiarity 

 21

studied words (16 for practice) were presented in their alternate plurality (similar non-

targets). Thus, the probability of an target at test was the same as in experiment two. 

Participants were also informed that 1/3 of the test items would be targets and that the 

remainder would be non-targets. 

Results and Discussion 

Figures 5 and 6 show that target versus similar non-target ROCs were clearly concave in 

all experiments. As a result the DP model badly misfits these ROCs. In the no-new 

experiments, the best the DP model could do was to join the end points of the curve9; in the 

with-new experiments, misfit is evident for the end points as well. The SP-c model provided 

an accurate account of these ROCs in all experiments, despite having one less parameter than 

the DP model in the no-new experiments, and was selected by both the AIC and BIC criteria 

in both no-new experiments. The G’ measure indicated that in the no-new experiments, the 

SP-c model fit was almost 10 times better than the DP model fit in the list discrimination, and 

about 3 1/3 times better in the plural discrimination.  

From a single process perspective, these results support the cue matching theory 

underlying the SP-c model as it was selected ahead of the SP model by both AIC and BIC in 

both no-new experiments. As in the with-new experiments, allowing unequal evidence 

variance for targets and similar non-targets did not greatly increase fit in the no-new 

experiments. Neither the increase in fit by a factor of 1.25 for list discrimination, nor the 

increase by a factor of 1.19 for plural discrimination, was significant, χ2(6)=11.5, p=.07, and 

χ2(23)=29.4, p=.17, respectively. The SP model fits did consistently estimate greater 

evidence variance for targets than similar non-targets in both no-new experiments, but only 

by factors of 1.13 and 1.09 for list and plural discrimination respectively. This supports the 

cue matching theory from which the SP-c model was derived. 

Examination of Figures 5 and 6 also confirms the cue matching theory’s prediction that 

accuracy is greater in the no-new than with-new experiments, as indicated by both no-new 

ROCs being above the corresponding with-new ROCs. We used hit (H) and false alarm (FA) 

rates for targets and similar non-targets respectively to calculate d’=z(H)-z(FA) in order to 
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measure discrimination between targets and similar non-targets and tested the cue matching 

model’s prediction of greater discrimination for no-new than with-new experiments using 

one-tailed t-tests on these d’ scores. The mean d’ was significantly greater in no-new (2.12) 

than with-new (1.53) list discrimination experiments, t(9)=1.89, p=.046. The mean d’ was 

also significantly greater in with-new (1.53) than no-new (1.07) plural discrimination 

experiments, t(38)=1.87, p=.035. 

Comparison of G’ for the DP-s and DP models in Tables 4 and 5 reveals that allowing 

specific strength in evidence, and hence curvature in target versus similar non-target ROCs, 

produced a large increase in fit, by a factor of 11, χ2(12)=519, p<.001, for list discrimination 

and a factor of 5.1, χ2(46)=498, p<.001, in plural discrimination. Once specific strength was 

included, allowing unequal evidence variance produced only a small and non-significant 

increase in fit, by factors of 1.28, χ2(6)=11, p=.09, and 1.22, χ2(23)=21, p=.56, for list and 

plural discrimination respectively. These results for dual process models are consistent with 

the results for single process models in indicating that the difference in evidence variance 

between targets and similar non-targets was negligible. They contrast with dual process 

model results for with-new experiments, where allowing unequal evidence variance produced 

a much larger increase in fit. This occurred because new items clearly had much lower 

evidence variance than target and similar non-target items, and so in the with-new 

experiments the DP-s model, which assumes equal variance for all test items types, was 

inadequate.  

Given the DP-s model was favoured in the no-new experiments we examine its 

parameters to quantify the role played by discrete recollection. In experiment three, the 

average probability of a correct response was 0.85 and 0.84 for target and similar non-target 

trials respectively. The DP-s model attributes 15% and 8% respectively of these correct 

responses to recollection. In experiment four, the average probability of a correct response 

was lower, at 0.76 and 0.77 for targets and similar non-targets respectively. The DP-s model 

attributes 33% and 25% respectively of the correct responses to recollection. Consistent with 

this pattern, the average d' estimate for the DP-s model was greater in list discrimination 



Recollection and Familiarity 

 23

(1.89) than in plural discrimination (0.98). In contrast to the with-new experiments, these 

results are not consistent with better discrimination based on continuous evidence in the 

plurals paradigm than the list discrimination paradigm due to greater familiarity for targets 

than similar non-targets.  

We hypothesised that dual process models could predict an increase in performance in 

no-new compared to with-new experiments if the exclusion of new test items encouraged 

recollection. However, estimates of recollection derived from the DP-s model indicate lower 

recollection rates in the no-new experiments compared to with-new experiments. 

Recollection estimates reduced from 34% and 29% of trials, on average, for with-new list and 

plural discrimination respectively to 10% and 22% for corresponding no-new experiments. 

Comparison of DP-su recollection estimates for list discrimination also revealed a reduction 

from 24% to 9%, although for  plural discrimination, recollection estimates increased from 

14% to 19%. Overall, these results are more consistent with increased accuracy in no-new 

experiments being due to reduced evidence noise, as predicted by the cue matching model, 

rather than to an increase in recollection. In addition, there was also no evidence that explicit 

recollect-to-reject instructions in experiment four increased the probability of recollection for 

similar non-targets  compared to experiment three in which participants were not given such 

instructions.    

General Discussion 
We examined two issues fundamental issues for recognition memory, whether decisions 

are based on discrete recollection, continuous evidence, or both, and whether continuous 

evidence is restricted to familiarity, providing only information about the recency and 

duration of study, or whether continuous evidence can also convey specific information about 

details of a study episode. Dual process theory assumes that both recollection and continuous 

evidence contribute to recognition decisions, with recollection providing information about 

details of the study episode and evidence restricted to the generalized strength or familiarity 

of a test item (Yonelinas, 2002). Single process theories assume that recognition decisions are 

based only on continuous evidence containing details of the study episode derived from task 
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dependent cue matching processes, which provides what we have called specific strength.  

We examined these issues using Receivers Operating Characteristic (ROC) curves, 

parametric plots of the probability of accepting test items of different types as a function of 

decision confidence. ROC analysis has been a particular focus of Yonelinas’s (1994) dual 

process signal detection theory. This theory assumes that decisions are based on recollection 

when it occurs, leading to high confidence responses. When recollection fails decisions are 

based on a familiarity, which is continuous and distributed with equal variance for all types of 

test items, leading to graded confidence responses depending on the magnitude of familiarity. 

We compared the predictions of the dual process model with the predictions of single process 

models where all decisions are based on a signal detection decision process applied to a 

continuous evidence dimension. In the single process models different types of test items can 

have differing evidence variance, and evidence can consist of familiarity and/or specific 

strength, depending on task demands.   

Single and dual process accounts were tested with data from a list discrimination 

paradigm (Yonelinas, 1994) and a plural discrimination paradigm (Rotello et al., 2000). 

Importantly, these paradigms attempted to minimize differences in familiarity between 

targets and non-targets that are very similar to targets (i.e., test items studied in a non-target 

list or with the opposite plurality to a studied item). When familiarity is equated the dual 

process model predicts linear target versus similar non-target ROCs because decisions can 

only be based on discrete information provided by recollection. The single process model, in 

contrast, predicts concave ROCs in these paradigms. While our experiments replicated most 

of the findings of Yonelinas (1994) and Rotello et al., particularly an unusual “dip effect”, 

wherein the ROC curve for similar non-targets versus new non-targets (i.e., items not studied 

in either list or plurality) deviates below the main diagonal to the right, we did not replicate 

Rotello et al.’s finding of a linear target versus similar non-target ROC curve. Instead, we 

found pronounced concave ROC curves. We also replicated these findings in a further 

experiment that did not test new non-targets.       

We proposed and tested two modified dual process models. One, the DP-s model, allowed 
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specific strength as well as familiarity to contribute to continuous evidence. The other, the 

DP-su model, further allowed unequal evidence variance. Like the single process model, the 

modified dual process models permits targets and similar non-target with equal familiarity to 

be discriminated on the basis of specific strength consistent with the concave target versus 

similar non-target ROC curves which were observed. We also proposed a single process 

model based on the idea that specific strength is derived from the difference between matches 

to target and non-target cues. This cue matching model predicts that evidence variance for 

targets and similar non-targets should be equal and that greater discrimination between 

targets and similar non-targets should be found when new non-targets are not included in 

testing.  

Overall, our results are inconsistent with Yonelinas’s (1994) original dual process theory 

in both list discrimination and plural discrimination paradigms, both with and without new 

test items. In contrast, our results are consistent with the single process cue matching model 

in all four experiments. It can be concluded that, at least in these experiments, continuous 

evidence is not restricted to familiarity. Instead, evidence can also convey specific 

information about details of the study episode, such as list membership and the plurality in 

which an item was studied. Yonelinas (1999) speculated that continuous evidence might 

support source discrimination “in conditions in which the item and source information are 

more closely integrated, such as may be the case when two individuals are holding a 

conversation” (p.1416). Our results indicate that continuous evidence can support 

discriminations based on source in more impoverished situations where source and item 

information are not closely integrated, as was the case for our list discrimination experiments 

where the two sources were only distinguished by a small pause between otherwise 

homogenous study lists.  

Our results do not necessarily reject the idea of a discrete recollection processes in 

recognition memory, but only when continuous evidence is allowed to convey information 

about details and to have unequal variance, at least for new items relative to other types of 

test items. When allowed these extensions, dual process models assuming discrete 
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recollection provided a very accurate account of the data. However, recollection was 

estimated to be the basis of only a minority of correct responses, about 23% on average, and 

the improvement of fit afforded by recollection was, in all but one of eight cases, insufficient 

to warrant the increase in model complexity which it entails. It would be of interest to know 

if this is also the case in other paradigms or for other groups of participants who, for whatever 

reason, place greater strategic emphasis on recollection. For example, increased reliance on a 

discrete recollection process would enable the extended dual process model which we have 

proposed to account for the few linear ROCs that have been reported in similar paradigms to 

those we considered here (Rotello et al., 2000; Yonelinas, 1997, 1999). However, a strong 

reliance on recollection appears to be the exception rather than the rule. Further, we did not 

find that reliance on recollection was influenced by strategic factors, such as giving explicit 

recollect-to-reject instructions, as was the case in our plural discrimination experiments but 

not our list discrimination experiments.  

An alternative possibility, and one that has received increasing support recently (e.g., 

Kelley & Wixted, 2001; Rotello, Macmillan, Reeder & Wong, 2005; Wixted & Stretch, 

2004), is that recollection, like cue matching, can produce continuous, or at least graded, 

evidence, especially in situations where a rich array of details about the study context and 

study item are available. The experimental paradigms we have examined have usually been 

assumed not to have this richness. However, it is possible that in some circumstances 

recollection acts like a discrete process and in others like a graded or even continuous 

process, depending on the strategies which participants adopt to encode study items. In this 

view, what we have called specific strength might be thought to be, at least in part, the result 

of a more finely graded recollective process, and the few exceptional cases where linear ROC 

curves have been observed may be attributed to particularly impoverished encoding. 

Our results provided clear support, in terms of a balance between goodness-of-fit and 

simplicity, for the single process cue matching model which we proposed (see Appendix B 

for details). We also confirmed two predictions made by this model; that targets and similar 

non-targets should have the same evidence variance and that discrimination of targets and 
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similar non-targets is reduced when new non-targets are included in testing. The latter 

prediction is not unique; it could also be made by dual process models if excluding new non-

targets encourages recollection. However, this possibility was not confirmed by recollection 

parameter estimates derived from fits of dual process models to our data. Instead, these fits 

generally supported decreased recollection and increased discrimination on the basis of 

continuous evidence when new non-targets were not tested. Further investigation of this 

effect is warranted as other factors may have also played a part, such as differential encoding 

of study items, which might have occurred because participants were aware of the makeup of 

test lists before they commenced study.  

The cue matching theory demonstrates how a single process memory theory is able to 

provide a plausible explanation of the pattern of parameters estimated by fitting the normal 

unequal variance signal detection model of choice. Although this theory does not specify the 

processes by which matches are obtained nor the representations used for cues and memory 

traces, Clark (1997) implemented a closely related model for two alternative forced choices 

between targets and similar non-targets using Hintzman’s (19988) MINERVA theory of 

recognition memory, which does make these aspects explicit. Clark assumed that forced 

choice decisions are based on a difference between matches to target and non-target test 

alternatives, just as our cue matching theory assumes that yes/no choices are based on the 

difference between matches to target and non-target cues. Given the success of the cue 

matching model, future research might test more detailed implementations using MINERVA, 

other global matching models, or theories which assume that evidence is based on a 

likelihood transformation of cue match strength (e.g., Dennis & Humphreys, 2001; Shiffrin & 

Steyvers, 1997). An alternative possibility is provided by theories that combine two sources 

of continuous evidence as assumed by in two-dimensional signal detection (e.g., Banks, 

2000; Rotello, Macmillan & Reeder, 2004). Although space constraints preclude provision of 

any details, we have found that two-dimensional signal detection models can provide an 

accurate account of our ROC data with the same economy of estimated parameters as the 

cue-matching model.  
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Appendix A: ROC Models 
According to dual process theory, two distinct sources of information can potentially 

support recognition judgments. The probability of correctly identifying a target depends upon 

the probability that it is recollected and, if recollection fails, on the probability that its 

familiarity exceeds a given criterion value. Formally, this is represented by the following 

equation: 

 ( ) ( ) ( )( )1 1T T T TP c r r c d ′= + − −Φ −  (1) 

( )TP c  is the probability of correctly identifying a target at the level of confidence 

corresponding to the decision criterion, c;  is the probability of recollecting the target; Tr Td ′  

is the mean level of familiarity of the targets; and ( ).Φ  is the normal cumulative distribution 

function. In the case of non-targets, the probability of incorrect identification as a target 

depends upon the probability that recollection fails and that familiarity exceeds the specified 

criterion value. This probability is given by the following equation: 

 ( ) ( ) ( )( )1 1N NP c r c dN′= − −Φ −  (2) 

( )NP c  is the probability of incorrectly identifying a non-target as a target at the level of 

confidence corresponding to c,  is the probability of recollection and  is the mean level 

of general familiarity of non-targets. It is assumed that if details relevant to discriminating 

targets and non-targets are recollected a correct judgment is always made (Yonelinas, 1999a). 

For targets, this represents a recollect-to-accept strategy, while for non-targets, it represents a 

recollect-to-reject strategy.   

Nr Nd ′

Given Equations (1) and (2), it is possible to derive the form of the ROC for targets vs. 

non-targets when familiarity is the same for both; that is, when Td dN′ ′= . In this case, after 

rearranging the terms in the two earlier equations, we find the following equation for ( )TP c  as 

a function of : ( )NP c
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Equation (3) depends solely on recollection and is unaffected by familiarity. It describes a 

straight line with a y-intercept (i.e. the value of ( )TP c  when ( ) 0NP c = ) equal to  and a Tr
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slope equal to the ratio of 1  to 1Tr− Nr− . Thus, under this model, a linear ROC is indicative 

of equal levels of familiarity for targets and non-targets.  

In single process theories, discrimination between targets and non-targets is based on a 

single strength-of-evidence dimension. Hence:  
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Here,  and  are the standard deviations of the strength-of-evidence distributions of 

targets and non-targets, respectively. If 

Ts Ns

Td d′ ′>  this equation results in a typically concave 

ROC curve that intersects the y-axis at the origin. Its shape depends upon the ratio of the two 

standard deviations. If  then the curve is asymmetrical with the equal likelihood point 

(the point at which the slope of the ROC curve is equal to one) shifted relatively to the left, as 

is frequently observed in item recognition tasks in which non-targets are unstudied items. If 

 the curve is symmetrical about the anti-diagonal. If strength-of-evidence is based 

only on familiarity, which is the same for targets and non-targets (i.e. 

Ts s> N

N

N

Ts s=

Td d′ ′=  and ), 

then the ROC curve reduces to a straight line given by, 

T Ns s=

 ( ) ( )T NP c P c=  (5) 

Thus, if familiarity in dual process models and strength-of-evidence in single process 

models corresponds to generalized strength, in the sense proposed by Chalmers and 

Humphreys (1998), then in situations where targets and non-targets are equally familiar, the 

resulting ROC curve is necessarily a straight line. The crucial difference between the models 

is that the dual process model predicts that the linear ROC can fall above the main diagonal 

because of recollection. In contrast, if strength-of-evidence in single process models, at least 

in part, consists of specific strength able to support the discrimination required by the task, 

the resulting ROC curve will be concave, even if targets and non-targets have equal 

familiarity. 

The generalized dual process signal detection model  

We start with a generalized dual-process signal detection model and derive specific cases 
from it. Let  be a non-decreasing sequence of values on a familiarity ( 1 2 3 4 5, , , ,C c c c c c= )
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5dimension such that . In experiments one and two, there were three types 

of item presented at test; target, similar non-target and new non-target. In experiments three 

and four, there were two types of item; target and similar non-target. A set of five models 

was fit to the data from experiments one and two (with-new experiments) and experiments 

three and four (no-new experiments). These models can each be viewed as a constrained 

version of a generalized dual process signal detection model, named the DP-su model in 

Table 1. The DP-su model has a different form in the with-new and no-new experiments. 

1 2 3 4c c c c c≥ ≥ ≥ ≥

The generalized dual process signal detection model for the with-new experiments is 
defined as follows. Let  be the probability of responding “yes” to a target for some  

in C. Similarly, let 

( )T iP c ic

( )SN iP c  and ( )NN iP c  be the probabilities of responding “yes” to a similar 

non-target and a new non-target, respectively. Then, 
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Here,  is the probability of recollecting an old item (“recollect-to-accept”),  is the 

probability of recollecting a similar non-target (“recollect-to-reject”), 

Tr SNr

Td ′  is the mean 

evidence for target items,  is the mean evidence of similar non-targets,  is the standard 

deviation of target evidence, and  is the standard deviation of similar non-target evidence. 

Evidence is scaled with reference to the new non-target distribution whereby the mean 

evidence of new non-targets is zero (i.e., 

SNd ′ Ts

SNs

0NNd ′ = ) and the corresponding standard deviation 

is one (i.e., ). The function, 1NNs = ( ).Φ  is the normal cumulative distribution function. 

The generalized dual process signal detection model for the no-new experiments is 

defined as follows:  

 
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 /

1 1
T i T T i T T

SN i SN i

P c r r c d s

P c r c

′= + − −Φ −

= − −Φ
 (7) 

In this case, evidence is scaled with reference to the similar non-target distribution. Thus, the 

mean evidence of similar non-targets is zero (i.e., 0SNd ′ = ) and the corresponding standard 

deviation is one (i.e., ). 1SNs =



Recollection and Familiarity 

Guessing 

Equations (6) and (7) may also be modified to incorporate guessing on some proportion 

of trials, g. In this case, participants are assumed to select a response category at random with 

an equal probability (across of categories) of 1/6. Let J be the set of conditions in an 
experiment and let j J∈ . Let  be the probability of an “yes” response for some  

under condition j and for some probability of guessing, g. Then, 

( ,j iP c g ) ic

 ( ) ( ) ( ) ( ), 1j i i j iP c g gQ c g P c= + −  (8) 

Where  is the cumulative probability of selecting each response category r for 

 and  for all . 

( ) i
i r

Q c q=∑ r

1r i= K 1/ 6rq = 1 6r = K

Model generation 

In Table 1 the generalized dual process signal detection model is indicated by the 

acronym DP-su. Each of the remaining models listed in Table 1 can be generated from the 

DP-su model by applying each of three constraints corresponding to the “no” entries in Table 

1. These constraints are, 

Zero recollection:    0T SNr r= =      (9) 

Equal variance:    1T SNs s= =      (10) 

Familiarity evidence:    T S

T SN

d d
s s

N′ ′=
=

     (11) 

To illustrate the procedure, the DP model is derived from the DP-su model by applying 

both the equal variance and familiarity evidence constraints (indicated by the “no” entries in 

the corresponding row of Table 1). This leads to the following equations for the DP model for 

the with-new experiments, derived from Equation (6),  

 

( ) ( ) ( )( )
( ) ( ) ( )(
( ) ( )

1 1

1 1

1

T i T T i

SN i SN i

NN i i

P c r r c d

P c r c d

P c c

)
′= + − −Φ −

′= − −Φ −

= −Φ

 (12) 

For the no-new experiments the DP model is derived from Equation (7), 

 
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 1
T i T T i

SN i SN i

P c r r c

P c r c

= + − −Φ

= − −Φ
 (13) 
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It should be noted that the signal detection part of Equation (13) may be interpreted in one of 

two different ways. First, it may be interpreted as implementing a genuine signal detection 

process based on identical familiarity distributions for both the targets and similar non-

targets. Second, it may be equally well interpreted as implementing a biased guessing process 

in which the probability of guessing each response category is parameterized in terms of a 

decision criterion, c. Although, for reasons of consistency and comparability between models, 

this process is given this parameterization, it is formally equivalent to guessing each response 
category i with some probability, ig , under the constraint that 1ii

g =∑ .  

The SP model is obtained by applying the zero recollection constraint. The SP-c model is 

obtained by applying the further constraint that sSN=sT. In the no-new experiments the latter 

constraint is equivalent to the equal variance constraint, whereas in the with-new experiments 

the SP-c model allows the standard deviation for new non-targets to differ from the standard 

deviation of targets and similar non-targets.   
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Appendix B: Cue Matching Model 
Let I be a test item and let T(I) and SN(I) be the match strength of I to target and non-

target cues, respectively. For example, in the plurals discrimination paradigm, T(I) is the 

strength of the match between I and a cue corresponding to the same plural form at study, 

while SN(I) is the strength of the match between I and a cue corresponding to the alternative 

plural form at study. The specific strength that I is a target, sT(I) is given by the difference 

between these two match strengths: sT(I)=T(I)–SN(I). 

Let T be a target item, let SN be a similar non-target item, and let NN be a new non-target 

item. Then, sT(T)=T(T)–SN(T),  sT(SN)=T(SN)–SN(SN), and  sT(NN)=T(NN)–SN(NN). We 

further assume that T(T)=SN(SN)>T(SN)=SN(T)>T(NN)=ST(NN) yielding three distinct match 

strengths, denoted by a, b, and c. We assume that each of these is normally distributed with 

means, μa> μb>μc and standard deviations, σa>σb>σc. Hence, the specific strength of each 

item, I, is also normally distributed. Let μI and σI be the mean and standard deviation of the 

distribution of sT(I). Then,  
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bT a

NS b a

NN c c

μ μ μ
μ μ μ
μ μ μ

= −
= −

= −
 

2 2

2 2

2 2

T a

NS b a

NN c c

2

2

2

bσ σ σ

σ σ σ

σ σ σ

= +

= +

= +

 

It follows that T NSμ μ= −  and 0NNμ = , and T NS NNσ σ σ= > .  

In the “no-new” condition, no new items are presented at test and we assume that 

decisions are based solely on the specific strength, sT(I). Hence, relative to the non-target 

condition, ( ) TTTSNTSNTd σμσμμ 2' / =−= . Similarly, ( )/ / 0SN SN SN SN SNd μ μ σ′ = − = .  

In the “with-new” condition new items are presented at test and we assume that decisions 

are based on the sum of specific strength, sT(I), and familiarity, F(I). We further assume that 

F(I) is normally distributed with mean, ( )F Iμ , and standard deviation, ( )F Iσ , and that 

( ) ( ) ( )F T F SN F NNμ μ μ= >  and ( ) ( ) ( )F T F SN F NNσ σ σ= > . Let ( ) ( ) (T )I s I F Iε = + . It follows that, 

( ) ( )

( ) ( )

( ) ( )

TT F

TSN F T

NN F NN

ε

ε

ε

Tμ μ μ

μ μ μ

μ μ

= +

= − +

=

 
( ) ( )

( ) ( )

( ) ( )

2 2 2

2 2

2 2 2

TT F

SN T

NNNN F NN

ε

ε ε

ε

σ σ σ

σ σ

σ σ σ

= +

=

= +

T

 

Hence, d’ values for the target condition relative to the new non-target condition (T/NN),  
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( ) ( )( ) ( ) ( ) ( )( ) ( )NNNNFTFTNNNNTNNTd εεεε σμμμσμμ −+=−=/' . For the similar non-target 

condition relative to the new non-target condition, ( ) ( )( ) ( )/ /SN NN T F T F NN NNd εμ μ μ σ′ = − + −  and 

. ( ) ( )( ) ( )/ / 0NN NN F NN F NN NNd εμ μ σ′ = − =

Let  above be the relative discriminability of targets and non-targets in the in the “no-

new” condition (given by  above) and let 

nd ′

/T SNd′ wd ′  be the corresponding discriminability in 

the “with-new” condition. Then, 

 

( ) ( ) ( )( )
( )

( )( )
2 2

2 2

/

2 /

/

w T SN NN T

T T F T

n T T F T

d d d

d

ε εσ σ

μ σ σ

σ σ σ

′ ′ ′= −

= +

′= +

 

Thus, the relative discriminability of targets and similar non-targets in the “with-new” 

condition is reduced from the “no-new” condition by a factor that depends upon the relative 

variance of familiarity compared to the variance of episode specific strength. For example, if 
the respective variances are equal such that ( ) TF Tσ σ= , then ''' 707.02 nnw ddd == . More 

generally, if ( )
2 2

TF T kσ σ= , then / 1w nd d k′ ′= +  and, solving for k, we have . ( )2/ 1n wk d d′ ′= −

Consistent with these predictions, we found that the ratio of d’T in the no-new experiment 

to d’T-d’SN in the with-new experiments was greater than one. For list discrimination this ratio 

was 1.51 and for plural discrimination it was 1.60. According to the cue matching theory, the 

size of these ratios depends on the relative standard deviations of specific strength and 

familiarity. The ratio for the list discrimination experiment indicates that the standard 

deviation of specific strength was 22% greater on average than the standard deviation of 

familiarity. In the plural discrimination experiments this value is slightly larger, at 36%. 
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Figure Captions 
Figure 1. Yonelinas’s (1994), experiment one, participant average list discrimination ROCs 

(measured from his Figure 4 and averaged over short, 10 item, and long, 30 item, study list 

conditions) and participant average ROCs for Rotello et al.’s (2000) experiment one 

(measured from their Figure 3).  

Figure 2. Distribution and cumulative distribution functions for an unequal variance normal 

signal detection model fit to Rotello et al.’s (2000) experiment one data. Vertical dotted lines 

indicate the estimated criterion for the new-old decision (middle line) and for confidence 

ratings.   

Figure 3. Experiment one participant average ROC data (circles) and fits of the Dual Process 

(DP) and Single Process cue (SP-c) models averaged over participants for experiment one. 

Upper symbols and lines are target versus new non-target. Lower symbols and lines are 

similar non-target versus new non-target.  

Figure 4. Experiment two participant average ROC data (circles) and fits of the Dual Process 

(DP) and Single Process cue (SP-c) models averaged over participants for experiment two. 

Upper symbols and lines are target versus new non-target. Lower symbols and lines are 

similar non-target versus new non-target.   

Figure 5. Participant average target versus similar non-target ROC data and fits of the Single 

Process cue (SP-c) and Dual Process (DP) models averaged over participants for experiment 

one (With New) and experiment three (No New).  

Figure 6. Participant average target versus similar non-target ROC data and fits of the Single 

Process cue (SP-c) and Dual Process (DP) models averaged over participants for experiment 

two (With New) and experiment four (No New).   



Tables 
Table 1 

Definition of models according to the presence or absence of each of three assumptions. DP=dual process signal detection assuming only 

familiarity based evidence with equal variance, SP=single process signal detection, s=evidence with a specific (cue-dependent) component, 

u=unequal evidence variance. 

 Assumption 

Model Acronym Recollection Unequal Variance Specific Evidence 

DP-su Yes Yes Yes 

DP-s Yes No Yes 

DP Yes No No 

SP No Yes Yes 

SP-c No New Only Yes 



Table 2 
Summary of models (summed fit and criterion measures and mean parameter estimates over participants) for Experiment 1. See Table 1 and 

Appendix for model definitions. G’=G/97.68, AIC’=AIC-22963.5 and BIC’=BIC-23109.5. Estimated parameter values and minimum G’, AIC’ 

and BIC’ values are in bold type. Degrees of freedom (df) are given for G values. The r parameters are recollection probability estimates, the d’ 

and s parameters are evidence mean and standard deviation estimates and the subscripts T and N refer to target and similar non-targets 

respectively. The five decision criterion parameters for each model are not shown. 

 Summed Model Fit Participant Average Parameter Estimates 

Model G’ AIC’ BIC’ df rT rN sT sN d'T d'N

DP-su 1 0 19 24 .27 .21 1.56 1.53 1.99 0.39 

DP-s 2.58 131 119 36 .35 .32 1 1.43 0.77 

DP 6.45 496 470 42 .39 .39 1 1.16 

SP 1.45 20 9 36 0 1.97 1.84 2.85 -0.31 

SP-c 1.64 26 0 42 0 1.88 2.79 -0.33 
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Table 3 
Summary of model fits (summed fit and criterion measures and mean parameter estimates over participants) for Experiment 2. See Table 1 and 

Appendix A for model definitions. G’=G/112.33, AIC’=AIC-13292.0 and BIC’=BIC-13847.1. Estimated parameter values and minimum G’, 

AIC’ and BIC’ values are in bold type. Degrees of freedom (df) are given for G values. The r parameters are recollection probability estimates, 

the d’ and s parameters are evidence mean and standard deviation estimates and the subscripts T and N refer to target and similar non-targets 

respectively. The five decision criterion parameters for each model are not shown. 

 Model fit Participant Average Parameter Estimates 

Model G’ AIC’ BIC’ df rT rN sT sN d'T d'N

DP-su 1 27 235 76 .14 .14 1.57 1.51 1.63 0.18 

DP-s 1.90 52 121 114 .29 .28 1 0.63 0.95 

DP 2.94 131 131 133 .31 .27 1 0.77 

SP 1.55 12 82 114 0 1.87 1.88 2.09 -0.34 

SP-c 1.77 0 0 133 0 1.87 2.13 -0.33 
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Table 4 
Summary of model fits (summed fit and criterion measures and mean parameter estimates over participants) for Experiment 3. See Table 1 and 

Appendix A for model definitions. G’ = G/39.67, AIC’=AIC-14703.6 and BIC’=BIC-14827.4. Estimated parameter values and minimum G’, 

AIC’ and BIC’ values are in bold type. Degrees of freedom (df) are given for G values. The r parameters are recollection probability estimates, 

the d’ and s parameters are evidence mean and standard deviation estimates and the subscripts T and N refer to target and similar non-targets 

respectively. The five decision criterion parameters for each model are not shown. 

 Model fit Participant Average Parameter Estimates 

Model G’ AIC’ BIC’ df rT rN sT sN d'T d'N

DP-su 1 18 80 6 .11 .07 1.11 1 2.03 0 

DP-s 1.28 17 59 12 .13 .07 1 1.89 0 

DP 14.08 513 534 18 .54 .51 1 0 

SP 1.15 1 21 18 0 1.13 1 2.22 0 

SP-c 1.44 0 0 24 0 1 2.07 0 

 

 44 



Recollection and Familiarity 

 45 

Table 5 
Summary of model fits (summed fit and criterion measures and mean parameter estimates over participants) for Experiment 4. See Table 1 and 

Appendix A for model definitions. G’=G/95.14, AIC’=AIC-16152.9 and BIC’=BIC-16627.3. Estimated parameter values and minimum G’, AIC’ 

and BIC’ values are in bold type. Degrees of freedom (df) are given for G values. The r parameters are recollection probability estimates, the d’ 

and s parameters are evidence mean and standard deviation estimates and the subscripts T and N refer to target and similar non-targets 

respectively. The five decision criterion parameters for each model are not shown. 

 Model fit Participant Average Parameter Estimates 

Model G’ AIC’ BIC’ df rT rN sT sN d'T d'N

DP-su 1 53 290 23 .18 .20 1.16 1 1.12 0 

DP-s 1.22 28 186 46 .25 .19 1 0.98 0 

DP 6.24 459 539 69 .38 0.34 1 0 

SP 1.59 17 96 69 0 1.09 1 1.64 0 

SP-c 1.89 0 0 92 0 1 1.54 0 
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Footnotes 
1Equal familiarity, on average, seems more likely in the list discrimination paradigm, where the first and second 

studied lists were equally often designated as the target in testing, than in the plural discrimination paradigm, 

where features related to the target’s plurality would be more familiar. We compared estimates of familiarity 

between these two paradigms to examine this issue further 

2 A function is called concave if it has an inverted U-shape or, more strictly, if the y-value at the midpoint of the 

line segment connecting any two points on the function is less than the corresponding y-value on the function. 

3Asymmetry is often assessed by examining the z-ROC curve, which plots the inverse cumulative normal (z) 

transformation of the probabilities constituting the original ROC curve. If the underlying distributions are 

normal, the z-ROC is a straight line with a slope equal to the standard deviation of the non-target distribution 

divided by the standard deviation of the target distribution. In item recognition experiments z-ROC slopes are 

usually found to be reliably less than one, at least when accuracy is better than chance, consistent with normally 

distributed evidence which is more variable for targets than non-targets.  

4Although the cue-matching model is consistent with the non-target evidence distribution parameters estimated 

from Rotello et al’s. (2000) participant average data, it is inconsistent with the standard deviation estimate for 

target (old) items (1.48), as it is less than the standard deviation estimate for similar non-targets (1.75). Given 

the effects of averaging this finding does not necessarily reject the cue-matching model, which predicts that 

these estimates should be close to equal. The same problem was not evident in fits to Yonelinas’s (1994) 

participant average data, where similar non-targets have a slightly smaller standard deviation estimate (1.56) 

than targets (1.65). Note that in this study there were separate short and long list conditions, results from which 

were averaged in Figure 1 for clarity. Standard deviation estimates for the short condition were 1.7 and 1.46 and 

for the long condition 1.34 and 1.67 for similar non-targets and targets respectively.   

5 A convex curve is essentially the opposite of a concave curve. Where a concave curve has an inverted U-

shape, a convex curve has a upright U-shape. 

6We also examined a further extension that can be applied to all five models (see Appendix A for details), 

allowing responses to based on unbiased guessing on a proportion of trails. In contrast to the convex z-ROC 

curves produced by the addition of recollection to signal detection, the addition of guessing can produce 
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concave z-ROC curves (Ratcliff, McKoon & Tindall, 1994). Heathcote (2003) found greater evidence for 

concave than convex z-ROC curves in item recognition, although most curves were close to linear. Guessing 

was found to play only a minor role in the analyses reported here, and its inclusion did not change any of the 

conclusions based on models that omitted guessing, so we do not discuss it further.  

7Criteria accounting for functional form have not yet been developed for the models considered here, although 

they could in principle be developed using the methods described by Pitt, Myung and Zhang (2002).  

8 Note that we define n=k(m-1), as the only m-1 response categories contribute independent data. 

9 This is not the case when these ROCs are fit by linear regression, as used by Rotello et al. (2000). Because 

linear regression does not respect the bounded nature of probability, it can estimate a line of best fit through the 

middle of the curve, which gives an apparently better fit. 
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